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In this paper, the mathematical relationships between matrix-formatted frequency-domain fluorescence decay
data and the photokinetic transfer matrix are derived. These relationships reveal that procedures for analyzing
the fluorescence spectra and photokinetic mechanism of excited state reactions without model assumptions
can be developed when the fluorescence decay is described by first-order differential equations with constant
coefficients and when the spectral emission profiles of the decaying fluorophores are distinct. The linear
structure of wavelength-dependent frequency-domain decay data permits the simultaneous estimation of the
emission spectra, relative initial concentrations, and the photokinetic transfer matrix describing the decay and
interaction of multiple fluorophores. Data matrices acquired using a single sample are amenable to this
approach, eliminating the necessity to measure probe lifetimes separately at low fluorophore concentration.
Most importantly, this method does not require that the analyst choose a kinetic model describing fluorophore
emission. Instead, the kinetic mechanism is revealed in the structure of the transfer matrix. Statistical methods
can be used to estimate the number of emitting components contributing to a data matrix, so that every aspect
of the analysis can be pursued with@upriori assumptions. Other analytical tools, including a procedure

for matrix partitioning to estimate the spectra of sample fluorophores when the spectra are unknown and

graphical tools for evaluating prospective spectra and decays, also are described.

Introduction lifetimes) of the system components. The solution of such a

The similarity of the fluorescence lifetime of many organic system of kinetic equations consists of monoexponential com-
molecules and the time scale of molecular motions makes time_ponent decays. The coefficients of the component decays are

dependent fluorescence measurements particularly well-suite dproportional to the concentrations of the respective components.
for the study of molecular interactions. The wide use of On the other hand, when excited state reactions occur, the off-

. . . . . diagonal elements of the transfer matrix are nonzero. As a
fluorescence probes in a variety of fields including membrane Y

dynamics! protein dynamicg,and proton transfémttest to the result, the solution of the.syStem of }(inetic quatioins,(the
utility of this approach. Despite this widely used utility, the component decays) consists of multiexponential decays whose

application of probe methods to investigations of complex decay constants are the eigenvalues of the transfer matrix. The

systems can be problematic, due to the difficulty in analyzing preexponential decay coefficients also lose their simple relation-

fluorescence decays especially in the event that excited statetsr:"p tp the mTaI co??r(]anttratlo?s bec?qse Elt_wey ;]ncludte tgrms fr(;m
reactions occur between probes. The preexponential coefficients € eigenvectors of the transter matrix. 10 characterize such a

and decay constants which characterize a particular decay aré}lecay, the nu_m_per of required paramete;s rses fm;(m ?’ec‘?‘y
typically estimated by using nonlinear least-squares-fitting constants,n |_n|_t|_al concentrat!ons) ton® + n (n* kinetic
routines to implement the inverse Laplace transféri8ince parametersn |n_|t|al _concentratlons), whera, the num_ber of
this transformation is ill-conditioned, measurement errors in the decaying species, is unknowr) to the analyst. Typlca!ly, the
fluorescence signal are inflated, obscuring the number and value2nalyst attempts to use the simplest possible model first and

of the parameters needed to reconstruct the decay. Moreoverincrementally increases the complexity of the model to which
this ambiguity compounds the inherent collinearity of expo- the data is fit: Clearly, analyses carried out using this approach
nential decays (i.e., the similarity of decay profiles even when &€ susceptible to biases embedded in the analyst’'s model choice

decay constants differ significantly). Consequently, precise dataWhether it be from the numper of components or in the structure
are required to accurately characterize complex decays, and on&' the transfer matrix (location of zeros). Moreover, the use of
is hard pressed to find a multiexponential decay that cannot befitting routines which are subject to convergence on local
described as a combination of three-exponential detagisen minima an_d sensitive to mmal parameter values is an additional
this limitation, decay characterizations utilizing three or more Source of inaccurate analysis results. The larger the number of
components require external corroboration to establish their fiting parameters, the more serious this limitation is.
physical relevance. This is a central problem in the analysis of ~As a result of these limitations, efforts to make the analysis
the complex decays which are frequently observed for moleculesof fluorescence decays of systems undergoing excited state
solubilized in microheterogeneous media. reactions less subjective have been reported in the literature
In the case that no excited state reactions occur andregularly. Excimer formation is a very widely studied excited
component photokinetics are described by a system of coupledstate reaction, and many of these efforts have been directed
first-order linear differential equations, the transfer matrix toward the analysis of excimer decays. The following is a brief
describing the kinetics between components is a constant,history of excimer decay analysis, with a focus on approaches
diagonal matrix comprised of the relaxation rates (inverse to model-independent analysis. The analysis of excimer decays
was pioneered by BirRsvho described the time evolution of
€ Abstract published ilAdvance ACS Abstractsune 1, 1997. photoexcited pyrene monomers and collisionally excited pyrene
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Two-State Model (Birks) In 1991, Sugaret al. presented a clever simplification of
kxmC excimer lifetime analysis of frequency domain fluorescence
M + M* = X* data?’ Until this work, frequency-domain data usually were
kux (ke + kxm©)  kmx analyzed using essentially the same approach that is applied to
pe | ke K = time domain data, by adding an inverse Fourier transform to
l l kxme = G+ k) the inverse Laplace transform. Suggral. describe pyrene
emission in lipids using a three-state model to describe self-
M ™M guenched monomers, but they did not follow the traditional
Figure 1. Schematic diagram of Birk's two-state model for excimer  analysis procedure: (1) simulate the fluorescence impulse (time-
formation and its corresponding photokinetic transfer matrix. domain) response from the model, (2) Fourier transform the

. . . ) ) ) impulse response to the frequency domain, and (3) determine
excimers using two coupled linear differential equations. A the goodness of fit to the experimental data. Instead, they used
schematic representation and transfer matrix for this model aree jgentity between the derivative of a function and its Fourier
illustrated in Figure 1. This “two-state” model successfully yansform to (1) estimate the frequency-domain response directly
describes pyrene emission in viscous isotropic liquids and Was o m the model transfer matrix and (2) measure the goodness

the basis of many studies correlating the monomer/excimer of it The transfer matrix elements are estimated by minimizing
intensity ratio to the solvent viscosify. However, many  ihe gifference in simulated and experimental data. In the

attempts to apply this model to pyrene decay in hindered and o yency domain, the experimental data are linear functions

znlsotrgplc mﬁdla.have nol'g l?ge" sugces%?ﬂll.r fgct, it Zas of the transfer matrix, so that ambiguities reflect measurement
een shown that, in many lipid membranes, the dependence Ofy 5 without inflation due to domain transformations. The

pyrene emissign on conce_ntration is inconsistent with diffusion- primary difficulty in applying the frequency-domain method to
ﬁontrolle(? exglr;lwer formatloh; Consquently, several Iauthorj | experimental data is that it requires accurate measurement of
Tﬁve anf[lhyze tu?r”escer(ljcel gcallyzu5|ng mh?re comr|]o ?jx MOUeShe initial concentrations of the various sample components.
ese “lhree-stale” models Include a sel-quenched Pyren€rpqqe concentrations are unknown when a molecule is partition-
monomer which has other pyrene mole%ules as near nelghborsing into anisotropic media. Sugar addressed this problem in
but has not formed the excimer propé+: the case of pyrene-labeled lipids by using statistical mechanics

usieecroirgl, ?onr]nel:cr’ttr,nig(tjaF;?lg?y;ggmegstt?g;gein[\)lgr?gﬁf o 0 calculate the relative concentrations of excited state molecules
99 P with and without pyrene-labeled lipids as near neighbors. The

parameters using a series of rela'ged measurements also re(mcqﬁnitations of this approach are that the analyst is must select
the ambiguity of estimates of excited state reaction parameters, S -

. - the number of emitting species and the structure (number of
apparently by reducing the range of feasible parameter Values'zeros) of the transfer matrix. Consequently, the approach is

Moreover, because they apphed.thl_s technique to multidimen- subject to the limitations associated with the parameter fitting.
sional decay surfaces, the emission spectra of the system

components were also estimated. However, this method also In this paper, the mathematical relationships be_tween matrix-
requires that the analyst select a prospective model and initial formatted wavelength-dependent frequency-domain fluorescence
parameter values, and then refine the parameter values until th¢lecay data and the photokinetic transfer matrix are derived.
model simulates the experimental data. This approach is These relationships |nd_|cate that procedures_ for analyzing the
therefore subject to the same type of biases, though not to thefluorescence decays_ without model assumptions can be devel-
same degree, as fitting single decays. oped. These analytical proce_dures w_|II be appllcab!e to any
Duhamelet all6 took a totally different approach to the System _wh|ch can bg described using coupled first-order
determination of excimer lifetimes. The lifetime of pyrene differential equations with constant coefficients, irrespective of
excimers in sodium dodecyl sulfate micelles was recovered from €Xcited state reactions as long as all system components emit
time domain data without model assumptions. This was luminescence and there is some spectral distinction between
accomplished using the constancy of fhstatistic {.e., a ratio them. Emission-frequency-domain fluorescence decay matrices
of monomer to excimer decay rates) during the course of the are generated by measuring frequency-domain decays at several
fluorescence measurement to parameterize the excimer lifetime €mission wavelengths and excitation modulation frequencies.
There are two limitations to this approach that are pertinent to (Of course, the time-domain decays could also be measured as
the discussion of model independent analysis. First, the @ function of emission wavelength and transformed to the
calculation requires that the monomer emission rate be measuredrequency domain.) Emission spectra, modulation ratios, and
separately under different conditiorise(, low monomer con-  phase shifts are combined into complex quantum y#éldsd
centration) than those used to produce excimer formation. arranged by wavelength into emission-frequency-domain decay
Second, the statistic was calculated under the assumption thafnatrices. The resultant matrix is then analyzed directly or
the monomer decay rate is constant across the micelle micro-partitioned into spectral and kinetic factors from which the
domains, an assumption which other studies reftt. fluorescence emission spectra of the sample components, their
Another model-independent analysis is described by Berbe- initial excited state concentrations, and the transfer matrix
ran-Santot al2® The sum of the system of kinetic equations describing the photokinetics of the excited state species can be
is a first-order differential equation whose solution is a convolu- simultaneously estimated. This partitioning is accomplished by
tion of the intrinsic decays of all the species participating in a a variation of factor analysis based curve resolutfomn
given kinetic mechanism. They estimate the decay constantsapproach that has been successfully applied to the resolution
by fitting experimental data to a convolution of exponential of component responses from several types of matrix-formatted
decays in which the decay constants are fitting parameters. Thisspectral data, including steady-state fluorescence?daltathe
approach is model-independent, but as in flamethod, the Theory section, the relationship between the emission-frequency-
analysis does not reveal the kinetic mechanism; it provides domain decay matrix and the photokinetic transfer matrix, initial
access to the excimer decay rate in spite of it. Moreover, the excited state concentrations, and emission spectra is derived.
approach requires that the analyst know the number of speciedn the Analysis section, several tools for analysis of experimental
participating in the mechanism. matrices are described. First, rank estimatiog, the deter-
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mination of the number of emitting components) is reviewed. oscillations that are demodulated and phase-shifted relative to
Second, the partitioning of experimental data matrices into the excitation function. This solution is often written using an
spectra and frequency domain decays is described. Finally,expression which emphasizes the connection to the impulse
graphical approaches to evaluating prospective spectra andesponse (eq 2):
decays are described.

The following notation is used throughout this paper. y, =9, 4)
Matrices are denoted by uppercase, boldface Roman and Greek
letters; vectors are denoted by lowercase, boldface Roman andvherey,, represents the complex Fourier transform coefficients
Greek letters. Vectors which are columns of a matrix are of y: at frequencyw.
denoted using the subscripted, boldface matrix variabég, ( As Sugar pointed out, the key to frequency-domain analysis
m,; denotes thgth column ofM. Similarly, vectors which are  is the relationship between a derivative and its Fourier transform.
rows of the matrixM, are denotedn;,, wherei represents the  That relationship is
ith row. Of course, the matrix element on row columnj is e e o
denoted m. Scalars are denoted by lowercase, italic Roman dy/dt =Ky = w§ =y, ®)
and Greek letters. Complex variables are indicated using a
superpositioned tildd.€., M). As usual, superscript1 denotes
the matrix inverse, and the slanted pritjedgnotes the matrix §=—(K - Lwl)fly ©6)
transpose. Hatch mark () superscripts indicate that the vector 0
or matrix elements have been normalized so that their columns
sum to unity.

Rearrangement yields

which means that at each modulation frequency, the frequency-
domain decay coefficient are simple algebraic functions of
the photokinetics transfer matrix.

Multivariate Frequency-Domain Decays. When the fluo-

Multicomponent Frequency-Domain Decays. The time rescence emission is observed as a function of emission
evolution of many mixtures ofn excited fluorophores is  wavelength and time, the decays can be combined into a single
described by a system of coupled first-order linear differential r x b data matrixD wherer is the number of emission
equations: wavelengths monitored ant is the number of time bins

observed. This matrix is the product of the fluorescence
dy/dt =Ky +f 1) emission spectrum and fluorescence decay; it is analogous to

the decay described by eq 2. In matrix notatitnhcan be
written as follows:

Theory

wherey is ann x 1 vector describing the instantaneous

concentration of the excited fluorophores adds ann x n

transfer matrix whose elements describe the relaxation rates of D=XY'=XWTIZ' 7)

the componentskf) and the rate of conversion from one state

to the other kj). For example, in the two-state model (Figure whereX is ther x n matrix of sample component emission

1), ki1 describes the deactivation of the monomer excited state, spectra,Y is ab x n matrix of component decay curvel,is

ki1, describes the rate of excimer formation from the monomer, ann x n diagonal matrix that has the initial condition vector

ko1 is the rate at which excimer dissociates to excited state W~lyo along the diagonal, and is ab x n matrix of unit

monomer, andk; is the relaxation rate for the excimer. The decay curvesife., z=e *t). The spectrai(e., the columns of

vector functiorf is the driving or input function which produces X) are normalized so that the intensity of each spectrum is

the excited state populations. In time-domain experimeints, proportional to the product of the absorptivity and fluorescence

is ideally a Dirac function provided by an infinitely short laser rate constant of the corresponding fluorophore.

pulse. In frequency-domain experimentsis a sinusoidally Fluorescence decays measured in the frequency domain also

amplitude modulated continuous excitation beam. depend on the emission wavelength. The result is a complex
The solution of the system of equations in time-domain matrix D which is the product of the fluorescence emission

experiments, assuming excitation powers well below saturating spectrum and frequency-domain decay. The dimensions of this

intensities, is given by the expression matrix arer x ¢ wherer is the number of emission wavelengths
monitored andc is the number of excitation modulation
y, = weMwly, 2) frequencies observed. This matrix is analogous to the complex

decay described by eq 3.
whereW is a matrix whose columns are the eigenvectors of P =,
the matrixK (i.e.,, KW = WA), et is a matrix that has the D =XY'=XWIZ (8)
exponential of the product of the observation time and the
eigenvalues oK (observed decay constants) on the diagonal, ig yhe emission-frequency-domain decay matrix. It consists of

7 ; ) O )
W~* denotes theflrrl]versel o andyo '(Sj a vector of tEe it yhe frequency-domain decays of the sample components mea-
concentrations of the emitting excited states. Eac [COMpoNnentg, oy at several modulation frequencies. Equation 6 can be
of this solution is a combination of the exponential decays

defined byA. expanded and rearranged to

The solution of the system in frequency-domain measure- KY'=Y'Q-Y', 9)
ments is given by the expression

where the definitions oK, W, andrI are the same as abové.

whereY andY, are matrices constructed from the valueg of

y, = WMe @yt ) andyo measured at all the modulation frequencies (the rows of
Yo are identical). Q is a matrix that has the complex
whereW, W™1, andyp have the same definitions as aboie, frequenciesiw, along the diagonal. As long as the number of
is a diagonal matrix of signal amplitudes; m me/(w? + 422, frequencies is greater than the number of emitting sample

and ¢® is a matrix that has the complex phases of the observed componentsK becomes the unknown in an overdetermined
signals on the diagonal. The components of this solution are system of equations constructed from the complex part of eq 9
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and is easily calculatedia the expression D = X*®WTZ = XY (17)

— (V'O 71+

K=(Y Q)imagY imag (10) were the matrix® is a diagonal matrix comprised of the
. . Lo component quantum yields. When the emission-frequency-
in which the subscript image refers to the complex part of the 4omain decay matrix is analyzed without regarebtcthe results
designated matrix and the superscrptienotes the pseudoin- 510 Xt ®'Kd-L and ®y,. The component decay times are
verse of the designated matrix. The pseudoinvésfea matrix unaffected by®d, but the rates of excited state reactions (off-
is used to solve linear systems when the coefficient matrix, herediagonal elements oK) will be scaled by various ratios of
Y', is singular and has no inverse. Sinc€)(*Y' = I, the component quantum yields. The quantum yield mafrixan
pseudoinverse calculates the minimum norm solution of an pe constructed from literature or experimental values and

infinite number of system solutions. The initial concentrations yerted to adjustbK @1 anddyj prior to further analysis or
are calculated from a rearrangement of eq 9: data interpretation.

Y =V'0 — KY' (11) ~ One pf _the.implicit Iimitatipns of this treatment is that there

0 is no distinction between discrete and distributed decay pro-
cesses. Since all the molecules decaying in a distributed system
emit the same spectrum, the rank of the malits insufficient
bre analyze the distribution. In this case, the emission-frequency-
domain decay matrix is given by

Emission Frequency-Domain Decay Matrix Partitioning.
When the spectra of the mixture components are known, the
frequency-domain decays of those components can be calculate
immediately fromD:

¥ =X (12) D =XGWTIZ = XGY (18)

When the spectra of the mixture components are not known, were the matrixG is a matrix of ones and zeros which couples
because the spectrum depends on the fluorophore environmentielated decays to a single-emission spectrum. In this case, the
the spectra, photokinetics matrix, and initial concentrations can results of frequency-domain analysis &eGKG *, andGyo.
still be estimated by factorization of the emission-frequency SinceG sums the elements across the rowsobr yo, these
domain decay matrix. While the spectra and decays which values correspond to the mean properties of distributed decays.
comprise the matrix are unknown, related matrix components
are readily calculated. The singular value decomposition Data Analysis

partitionsD into the product of three matrices, two of which  pgeydorank Estimation. The first step in the analysis of
are linear combinations of the spectra and frequency-domain yatrix_formatted fluorescence data is the determination of the

decays: number of fluorophores which give rise to the observed matrix.
B =0sV =06’ (13) The rank of & x cideal fluorescence data matrix, the number
of basis vectors required to reconstruct the matrix, is the number
In the absence of measurement errtss ther x n matrix of of fluorophores which emit distinct spectra Measurement
column basis vectors (linear combinations of spec¥as the errors superimposed on the fluorescence signal increase the rank
¢ x n matrix of row basis vectors (linear combinations of the ©0f an experimental data matrix to, the smaller of the matrix
component frequency responses) &1k ann x n diagonal ~ dimensionsite, m= min(r,c) > n). In this case, the singular

matrix whose elements, reflect the contribution of the product ~ value decomposition db is
fi;si¥. to the variance ob. L
Since the basis vectots and® are linear combinations of D=USV =UQ (19)
the component spectra and decays, there must be a transforma- ~
tion matrix, IT, which converts those orthogonal basis vectors Where U now is ther x m matrix of orthonormal column

to the physically relevant matricéé andY. That is, since (spectral) basis vectory, is thec x m matrix of orthonormal
row (decay) basis vectors, a&is anm x m diagonal matrix
D =Um ¢ (14) whose elements; indicate the variance associated with the
. L L . corresponding produdtis;V.' to the total variance ob. The
there must exist somH such thatUIT = X andII™'Q" = Y'. singular vectors and singular values are ordered by magnitude,

Most importantly, the simple algebraic relationship betwken  so that the first matrix componefigs,17'1 describes the largest
and the frequency-domain decay data described by eq 9 isfraction of the variance db which can be described by a rank

preserved. As a result, the initial concentration mattpand 1 matrix and the last componefit Snii.m describes the
photophysics transfer matrik can be calculated directly from  smallest. The profile of the singular vectors associated with
I *andQ: the first component reflects the largest contributors to the
o o variance oD (i.e., spectral signals) while that of the last reflects
K = (1'Q'Q)inag1 Q") inag (15) the smallest (measurement errors). In the case of high signal-
to-noise ratios, the variance associated with the spectral signal
Y= 'QQ-KIO'Q (16) is much larger than that associated with the noiserdindlearly
reflected in the magnitudes of the singular valggs In the
This means that, for a given a spectral transformatiénthe case of low signal-to-noise ratios, determinatiomafan be a
corresponding photokinetic matrix is estimated, completely difficult problem. The consensus of several indicators is
characterizing the kinetic mechanism withaupriori assump- typically used. Methods comparing the variance of the matrix
tions by the analyst. componentsi(e., the relative magnitudes of tt&) are often

When the spectra fluorescing components are not known, less effective in this regime. Methods which compare the
neither are their quantum yields. Equations 8 can be rewritten frequency content of basis vect®¥$6 capitalizing on the
to include the quantum yields as matrix components rather thanpredominance of high-frequency signal components in measure-
spectral normalization factors: ment noise generally are more effective.



Matrix-Formatted Frequency-Domain Fluorescence

Emission-Frequency-Domain Decay Matrix Partitioning.
When the spectra of the emitting components are not known,
the complex quantum yield matrix must be partitioned into

spectra and frequency-domain decays (eq 14) prior to model-
independent decay analysis. In other words, the values of the

elements of a transformation matrikl, which convert the
column basis vector to the component spect¥, and whose
inverse transforms the scaled row basis vedts frequency-
domain decays?, must be determined. Feasible valuedbf
can be determined by minimizing an objective function which
measures the compliance of the estimateX of, K, andyq
with the mathematical constraints on physically meaningful
fluorescence data. Specifically, the component spetead
initial concentrationg/ should be real and nonnegative. The
diagonal elements df should be real and nonpositive, while

the off-diagonal elements should be real and nonnegative and
sum to values that are smaller than the magnitudes of the

corresponding diagonal elements. The singular vectors will not
meet any of these criteria. The objective function should also

measure the agreement between the experimental data matrix

D, and data matrices reconstructed using idealized spectra an
decaysD*. Idealized spectra and decays are estimated matrix

factors from which inconsistent elements have been deleted. A
reconstructed matrix can be computed by using idealyzed matrix

factors in the following rearrangement of eqs 8 and 9,

D* = X*(K*) "{(Y — Y (20)

where the asterisk indicates deletion of inconsistent values from

the matrix. They? function which measures this agreement is
2

given by the expression
D* - B\2
)
Op

VD K7}

(21)

where the variablers is a matrix comprised of the standard
deviation in the complex quantum vyield ang denotes the
number of degrees of freedom in the calculation. The normal-
ization of the columns oX, which reflects the relative quantum
yields, can be maintained by including constraints on the
normalization (the length) of the columns HE

Feasible values ofl can be determined by minimizing the
length of a vectoe, whose elements are the squared sums of
the inconsistent elements in the estimateXp¥, K, andyo.
In other words, the elements ef are the deviations of the
estimates oK, Y, K, andy, from the mathematical criteria on
these quantities. Since the magnitudes of these vectors are ve

different, the deviations must be scaled so that all the vector

components are of similar size. This is accomplished by
dividing the deviations by the corresponding matrix norms. The
components ot are listed (without scaling factors) in eq 22

below. They are the negative and imaginary components of

X, the negative and imaginary componentsygf the positive
diagonals oK, the negative off-diagonals &f, the off-diagonal
sums ofK, which are larger than the corresponding diagonal
elements, and thg? between the experimental and reconstructed
matrices. The deviations of the lengths of the column#Iof
from their target values (unity in the example below) maintains
the normalization of the spectra to their respective quantum
yields.

el)= zik (% < 0)°
e3)= ij((yo)jk <0y’

&2) = Zik (% €C)?
e4)= ij ((YO)jKGC)Z
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€5)= Y i (et <0 &6)= (k> 0) (22)
o= (S ika) > —k)*  &8)=y’
e(9:8+n) = H (Il -1y

wherei = 1, j = 1ic, k= 1:n, andl = 1:n andC represents

the field of complex numbers. The length efdecreases as
the size of these deviations decreases. The transformation
elements which minimize the length of the objective function
vector reconcile the spectral and kinetic factors to the math-
ematical constraints on spectra, initial concentrations, and
transfer matrices. Deviations from sample specific constraints
can be included ire to facilitate the analysis when they are
available.

Graphical Evaluation of Postulated Spectra and Decays.
One of the tools available to the analyst for evaluating the results
of matrix partitioning is graphical analysis. Two types of plots
are useful for assessing the quality of the data and the validity
f the postulated spectra and decays. The first is a scatter plot
f the rows of the complex quantum yield matrix. The elements
of the spectral and frequency-domain decay matrices can be
considered coordinates of the rows and column@,orfespec-

tively:
d.= Z X ke

d; = Z XY
When the coordinates are normalized to sum to 1 (eérilfor
complex coordinates), graphs of the coordinates lie within

1 dimensional simplices whose vertices coincide with the
coordinates of the spectra and frequency-domain decays. The
dispersion of the row coordinate}gj-‘, reflects the degree of
overlap in the spectra. The dispersion of the column coordinates
yﬁj reflects the overlap of the frequency-domain decays. When
one of the spectra has a characteristic base line, gero
intensity at wavelengths which the other components emit) there
are rows which are combinations of — 1 decays. The
coordinates of these rows fall on a simplex face. When one of
the spectra has a characteristic bane,(nonzero intensity at
wavelengths which the other components do not emit, there are
rows which are comprised of a single decay. The coordinates
of these rows fall on the vertex of the simplex. The degree of
alignment of the row coordinates with the simplex defined by

(23)

(24)

r)t,he spectral coordinates can be used to evaluate prospective

spectral profiles. Since the frequency-domain decays generally
are overlapped irrespective of the kinetics, the column coordi-
nates are rarely significantly dispersed. These relationships are
illustrated using an emission-frequency-domain decay matrix
that was simulated from digitized spectra and decay profiles
generated by the numerical solution of a system of coupled first-
order differential equations. The spectra and frequency-domain
decays used to simulate the matrix-formatted data are illustrated
in Figure 2a,b. The scatter plot of the row coordinates of the
calculated emission-frequency-domain matrix are depicted in
Figure 2c.

The second graph which is useful in the evaluation of
prospective spectra/decay combinations is the Argand plot of
the frequency-domain decays. The Argand plot isxgrplot
of the real and imaginary components of the decay at the various
modulation frequencies. Sugar has discussed the dependence
of the features of the Argand plot on the photokinetic model in
detail?! The diagrams can confirm several properties of the
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Figure 2. Graphical analysis of simulated emission-frequency-domain decay data. Part a: digitized spectra of the system components. Part b:
frequency domain decays of the components. The decays are scaled so that the minor components are visible. Part c: the row coordinate scatter
plot. Coordinates on the vertex marked 2 reflect the characteristic wavelengths in the excimer spectrum. Coordinates on the line between vertices
1 and 3 indicate that spectra 1 and 3 overlap at wavelengths which component 2 does not emit. Part d: Argand plots of the unscaled frequency
domain decays. The coordinate corresponding to the steady state is marked 1.

photokinetic system: (1) the descriptiveness of coupled first- Decay analyses based on the relationships described here have
order differential equations with constant coefficients, (2) the several advantages over iterative Laplace transform approaches.
number of fluorescent components, and (3) the mode of The calculations are carried out in the frequency domain,
fluorophore excitation. The Argand plots of the decays depicted avoiding the inflation of measurement errors that is associated
in Figure 2b are illustrated in Figure 2d. They are consistent with the transformation process. The simultaneous determina-
with undistributed, three-state kinetics with one nonradiatively tion of spectra which correspond to the emitting components

excited component. supports the physical relevance of the photokinetic mechanism,
. regardless of how many components are involved. The emis-
Conclusions sion-frequency-domain decay matrix is acquired from a single

Equations relating the emission-frequency-domain decay S2MPle, €liminating the necessity to measure system responses
matrix to the emission spectra, initial concentrations, and under different expenmental conditions. Most importantly, this
photokinetic transfer matrix of fluorescent mixtures have been method does not require that the analyst choose or construct a

derived for systems described by coupled first order differential kinetic model for th? quprophore emission. The structure of
equations with constant coefficients. When the spectra of the the rgsulj[ant photol_<|net|c transfer matrix reveals the details of
system components are known, the frequency-domain decaydn€ kinetic mechanism.

of those components, and therefore the photokinetic matrix and
initial fluorophore concentrations, can be calculated directly
from the emission-frequency-domain decay maifixVhen the
spectra are not known, the complex quantum yield matrix can
be partitioned into spectral and kinetic factors from which the
spectra, photokinetic matrix, and initial fluorophore concentra-
tions can be estimatéd. Several approaches to determining References and Notes
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