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In this paper, the mathematical relationships between matrix-formatted frequency-domain fluorescence decay
data and the photokinetic transfer matrix are derived. These relationships reveal that procedures for analyzing
the fluorescence spectra and photokinetic mechanism of excited state reactions without model assumptions
can be developed when the fluorescence decay is described by first-order differential equations with constant
coefficients and when the spectral emission profiles of the decaying fluorophores are distinct. The linear
structure of wavelength-dependent frequency-domain decay data permits the simultaneous estimation of the
emission spectra, relative initial concentrations, and the photokinetic transfer matrix describing the decay and
interaction of multiple fluorophores. Data matrices acquired using a single sample are amenable to this
approach, eliminating the necessity to measure probe lifetimes separately at low fluorophore concentration.
Most importantly, this method does not require that the analyst choose a kinetic model describing fluorophore
emission. Instead, the kinetic mechanism is revealed in the structure of the transfer matrix. Statistical methods
can be used to estimate the number of emitting components contributing to a data matrix, so that every aspect
of the analysis can be pursued withouta priori assumptions. Other analytical tools, including a procedure
for matrix partitioning to estimate the spectra of sample fluorophores when the spectra are unknown and
graphical tools for evaluating prospective spectra and decays, also are described.

Introduction

The similarity of the fluorescence lifetime of many organic
molecules and the time scale of molecular motions makes time-
dependent fluorescence measurements particularly well-suited
for the study of molecular interactions. The wide use of
fluorescence probes in a variety of fields including membrane
dynamics,1 protein dynamics,2 and proton transfer3 attest to the
utility of this approach. Despite this widely used utility, the
application of probe methods to investigations of complex
systems can be problematic, due to the difficulty in analyzing
fluorescence decays especially in the event that excited state
reactions occur between probes. The preexponential coefficients
and decay constants which characterize a particular decay are
typically estimated by using nonlinear least-squares-fitting
routines to implement the inverse Laplace transform.4 Since
this transformation is ill-conditioned, measurement errors in the
fluorescence signal are inflated, obscuring the number and values
of the parameters needed to reconstruct the decay. Moreover,
this ambiguity compounds the inherent collinearity of expo-
nential decays (i.e., the similarity of decay profiles even when
decay constants differ significantly). Consequently, precise data
are required to accurately characterize complex decays, and one
is hard pressed to find a multiexponential decay that cannot be
described as a combination of three-exponential decays.5 Given
this limitation, decay characterizations utilizing three or more
components require external corroboration to establish their
physical relevance. This is a central problem in the analysis of
the complex decays which are frequently observed for molecules
solubilized in microheterogeneous media.
In the case that no excited state reactions occur and

component photokinetics are described by a system of coupled
first-order linear differential equations, the transfer matrix
describing the kinetics between components is a constant,
diagonal matrix comprised of the relaxation rates (inverse

lifetimes) of the system components. The solution of such a
system of kinetic equations consists of monoexponential com-
ponent decays. The coefficients of the component decays are
proportional to the concentrations of the respective components.
On the other hand, when excited state reactions occur, the off-
diagonal elements of the transfer matrix are nonzero. As a
result, the solution of the system of kinetic equations (i.e., the
component decays) consists of multiexponential decays whose
decay constants are the eigenvalues of the transfer matrix. The
preexponential decay coefficients also lose their simple relation-
ship to the initial concentrations because they include terms from
the eigenvectors of the transfer matrix. To characterize such a
decay, the number of required parameters rises from 2n (n decay
constants,n initial concentrations) ton2 + n (n2 kinetic
parameters,n initial concentrations), wheren, the number of
decaying species, is unknown to the analyst. Typically, the
analyst attempts to use the simplest possible model first and
incrementally increases the complexity of the model to which
the data is fit.4 Clearly, analyses carried out using this approach
are susceptible to biases embedded in the analyst’s model choice
whether it be from the number of components or in the structure
of the transfer matrix (location of zeros). Moreover, the use of
fitting routines which are subject to convergence on local
minima and sensitive to initial parameter values is an additional
source of inaccurate analysis results. The larger the number of
fitting parameters, the more serious this limitation is.
As a result of these limitations, efforts to make the analysis

of fluorescence decays of systems undergoing excited state
reactions less subjective have been reported in the literature
regularly. Excimer formation is a very widely studied excited
state reaction, and many of these efforts have been directed
toward the analysis of excimer decays. The following is a brief
history of excimer decay analysis, with a focus on approaches
to model-independent analysis. The analysis of excimer decays
was pioneered by Birks6 who described the time evolution of
photoexcited pyrene monomers and collisionally excited pyreneX Abstract published inAdVance ACS Abstracts,June 1, 1997.
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excimers using two coupled linear differential equations. A
schematic representation and transfer matrix for this model are
illustrated in Figure 1. This “two-state” model successfully
describes pyrene emission in viscous isotropic liquids and was
the basis of many studies correlating the monomer/excimer
intensity ratio to the solvent viscosity.7,8 However, many
attempts to apply this model to pyrene decay in hindered and
anisotropic media have not been successful.9,10 In fact, it has
been shown that, in many lipid membranes, the dependence of
pyrene emission on concentration is inconsistent with diffusion-
controlled excimer formation.11 Consequently, several authors
have analyzed fluorescence decays using more complex models.
These “three-state” models include a self-quenched pyrene
monomer which has other pyrene molecules as near neighbors,
but has not formed the excimer proper.12,13

Beecham, Ameloot, and Brand showed that the practice of
using global compartmental analysis14,15 to estimate invariant
parameters using a series of related measurements also reduced
the ambiguity of estimates of excited state reaction parameters,
apparently by reducing the range of feasible parameter values.
Moreover, because they applied this technique to multidimen-
sional decay surfaces, the emission spectra of the system
components were also estimated. However, this method also
requires that the analyst select a prospective model and initial
parameter values, and then refine the parameter values until the
model simulates the experimental data. This approach is
therefore subject to the same type of biases, though not to the
same degree, as fitting single decays.
Duhamelet al.16 took a totally different approach to the

determination of excimer lifetimes. The lifetime of pyrene
excimers in sodium dodecyl sulfate micelles was recovered from
time domain data without model assumptions. This was
accomplished using the constancy of theâ-statistic (i.e., a ratio
of monomer to excimer decay rates) during the course of the
fluorescence measurement to parameterize the excimer lifetime.
There are two limitations to this approach that are pertinent to
the discussion of model independent analysis. First, the
calculation requires that the monomer emission rate be measured
separately under different conditions (i.e., low monomer con-
centration) than those used to produce excimer formation.
Second, the statistic was calculated under the assumption that
the monomer decay rate is constant across the micelle micro-
domains, an assumption which other studies refute.17-19

Another model-independent analysis is described by Berbe-
ran-Santoset al.20 The sum of the system of kinetic equations
is a first-order differential equation whose solution is a convolu-
tion of the intrinsic decays of all the species participating in a
given kinetic mechanism. They estimate the decay constants
by fitting experimental data to a convolution of exponential
decays in which the decay constants are fitting parameters. This
approach is model-independent, but as in theâ-method, the
analysis does not reveal the kinetic mechanism; it provides
access to the excimer decay rate in spite of it. Moreover, the
approach requires that the analyst know the number of species
participating in the mechanism.

In 1991, Sugaret al. presented a clever simplification of
excimer lifetime analysis of frequency domain fluorescence
data.21 Until this work, frequency-domain data usually were
analyzed using essentially the same approach that is applied to
time domain data, by adding an inverse Fourier transform to
the inverse Laplace transform. Sugaret al. describe pyrene
emission in lipids using a three-state model to describe self-
quenched monomers, but they did not follow the traditional
analysis procedure: (1) simulate the fluorescence impulse (time-
domain) response from the model, (2) Fourier transform the
impulse response to the frequency domain, and (3) determine
the goodness of fit to the experimental data. Instead, they used
the identity between the derivative of a function and its Fourier
transform to (1) estimate the frequency-domain response directly
from the model transfer matrix and (2) measure the goodness
of fit. The transfer matrix elements are estimated by minimizing
the difference in simulated and experimental data. In the
frequency domain, the experimental data are linear functions
of the transfer matrix, so that ambiguities reflect measurement
errors without inflation due to domain transformations. The
primary difficulty in applying the frequency-domain method to
experimental data is that it requires accurate measurement of
the initial concentrations of the various sample components.
These concentrations are unknown when a molecule is partition-
ing into anisotropic media. Sugar addressed this problem in
the case of pyrene-labeled lipids by using statistical mechanics
to calculate the relative concentrations of excited state molecules
with and without pyrene-labeled lipids as near neighbors. The
limitations of this approach are that the analyst is must select
the number of emitting species and the structure (number of
zeros) of the transfer matrix. Consequently, the approach is
subject to the limitations associated with the parameter fitting.
In this paper, the mathematical relationships between matrix-

formatted wavelength-dependent frequency-domain fluorescence
decay data and the photokinetic transfer matrix are derived.
These relationships indicate that procedures for analyzing the
fluorescence decays without model assumptions can be devel-
oped. These analytical procedures will be applicable to any
system which can be described using coupled first-order
differential equations with constant coefficients, irrespective of
excited state reactions as long as all system components emit
luminescence and there is some spectral distinction between
them. Emission-frequency-domain fluorescence decay matrices
are generated by measuring frequency-domain decays at several
emission wavelengths and excitation modulation frequencies.
(Of course, the time-domain decays could also be measured as
a function of emission wavelength and transformed to the
frequency domain.) Emission spectra, modulation ratios, and
phase shifts are combined into complex quantum yields21 and
arranged by wavelength into emission-frequency-domain decay
matrices. The resultant matrix is then analyzed directly or
partitioned into spectral and kinetic factors from which the
fluorescence emission spectra of the sample components, their
initial excited state concentrations, and the transfer matrix
describing the photokinetics of the excited state species can be
simultaneously estimated. This partitioning is accomplished by
a variation of factor analysis based curve resolution,22 an
approach that has been successfully applied to the resolution
of component responses from several types of matrix-formatted
spectral data, including steady-state fluorescence data.23 In the
Theory section, the relationship between the emission-frequency-
domain decay matrix and the photokinetic transfer matrix, initial
excited state concentrations, and emission spectra is derived.
In the Analysis section, several tools for analysis of experimental
matrices are described. First, rank estimation (i.e, the deter-

Figure 1. Schematic diagram of Birk’s two-state model for excimer
formation and its corresponding photokinetic transfer matrix.
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mination of the number of emitting components) is reviewed.
Second, the partitioning of experimental data matrices into
spectra and frequency domain decays is described. Finally,
graphical approaches to evaluating prospective spectra and
decays are described.
The following notation is used throughout this paper.

Matrices are denoted by uppercase, boldface Roman and Greek
letters; vectors are denoted by lowercase, boldface Roman and
Greek letters. Vectors which are columns of a matrix are
denoted using the subscripted, boldface matrix variable (i.e.,
m•j denotes thejth column ofM . Similarly, vectors which are
rows of the matrixM , are denotedmi•, wherei represents the
ith row. Of course, the matrix element on rowi in columnj is
denoted mij. Scalars are denoted by lowercase, italic Roman
and Greek letters. Complex variables are indicated using a
superpositioned tilde (i.e., M̃ ). As usual, superscript-1 denotes
the matrix inverse, and the slanted prime (′) denotes the matrix
transpose. Hatch mark (‡) superscripts indicate that the vector
or matrix elements have been normalized so that their columns
sum to unity.

Theory

Multicomponent Frequency-Domain Decays. The time
evolution of many mixtures ofn excited fluorophores is
described by a system of coupled first-order linear differential
equations:

where y is an n × 1 vector describing the instantaneous
concentration of the excited fluorophores andK is ann × n
transfer matrix whose elements describe the relaxation rates of
the components (kii) and the rate of conversion from one state
to the other (kij). For example, in the two-state model (Figure
1), k11 describes the deactivation of the monomer excited state,
k12 describes the rate of excimer formation from the monomer,
k21 is the rate at which excimer dissociates to excited state
monomer, andk22 is the relaxation rate for the excimer. The
vector functionf is the driving or input function which produces
the excited state populations. In time-domain experiments,f
is ideally a Dirac function provided by an infinitely short laser
pulse. In frequency-domain experiments,f is a sinusoidally
amplitude modulated continuous excitation beam.
The solution of the system of equations in time-domain

experiments, assuming excitation powers well below saturating
intensities, is given by the expression

whereW is a matrix whose columns are the eigenvectors of
the matrixK (i.e., KW ) WΛ), eΛt is a matrix that has the
exponential of the product of the observation time and the
eigenvalues ofK (observed decay constants) on the diagonal,
W-1 denotes the inverse ofW andy0 is a vector of the initial
concentrations of the emitting excited states. Each component
of this solution is a combination of the exponential decays
defined byΛ.
The solution of the system in frequency-domain measure-

ments is given by the expression

whereW,W-1, andy0 have the same definitions as above,M
is a diagonal matrix of signal amplitudes, mii ) mex/(ω2 + λi2)1/2,
and eιΦ is a matrix that has the complex phases of the observed
signals on the diagonal. The components of this solution are

oscillations that are demodulated and phase-shifted relative to
the excitation function. This solution is often written using an
expression which emphasizes the connection to the impulse
response (eq 2):

whereỹω represents the complex Fourier transform coefficients
of yt at frequencyω.
As Sugar pointed out, the key to frequency-domain analysis

is the relationship between a derivative and its Fourier transform.
That relationship is

Rearrangement yields

which means that at each modulation frequency, the frequency-
domain decay coefficientsỹ are simple algebraic functions of
the photokinetics transfer matrix.
Multivariate Frequency-Domain Decays. When the fluo-

rescence emission is observed as a function of emission
wavelength and time, the decays can be combined into a single
r × b data matrixD where r is the number of emission
wavelengths monitored andb is the number of time bins
observed. This matrix is the product of the fluorescence
emission spectrum and fluorescence decay; it is analogous to
the decay described by eq 2. In matrix notation,D can be
written as follows:

whereX is the r × n matrix of sample component emission
spectra,Y is ab × n matrix of component decay curves,Γ is
an n × n diagonal matrix that has the initial condition vector
W-1y0 along the diagonal, andZ is a b × n matrix of unit
decay curves (i.e., zi)e-λit). The spectra (i.e., the columns of
X) are normalized so that the intensity of each spectrum is
proportional to the product of the absorptivity and fluorescence
rate constant of the corresponding fluorophore.
Fluorescence decays measured in the frequency domain also

depend on the emission wavelength. The result is a complex
matrix D̃ which is the product of the fluorescence emission
spectrum and frequency-domain decay. The dimensions of this
matrix arer × cwherer is the number of emission wavelengths
monitored andc is the number of excitation modulation
frequencies observed. This matrix is analogous to the complex
decay described by eq 3.

where the definitions ofX,W, andΓ are the same as above.Ỹ
is the emission-frequency-domain decay matrix. It consists of
the frequency-domain decays of the sample components mea-
sured at several modulation frequencies. Equation 6 can be
expanded and rearranged to

whereỸ andY0 are matrices constructed from the values ofỹ
andy0 measured at all the modulation frequencies (the rows of
Y0 are identical). Ω̃ is a matrix that has the complex
frequencies,ιω, along the diagonal. As long as the number of
frequencies is greater than the number of emitting sample
components,K becomes the unknown in an overdetermined
system of equations constructed from the complex part of eq 9

yt ) ỹωe
-ιωt (4)

dỹ/dt ) Kỹ ) ιωỹ - y0 (5)

ỹ ) -(K - ιωI )-1y0 (6)

D ) XY ′ ) XWΓZ′ (7)

D̃ ) XỸ ′ ) XWΓZ̃′ (8)

KỸ ′ ) Ỹ′Ω̃ - Y′0 (9)

dy/dt ) Ky + f (1)

yt ) WeΛtW-1y0 (2)

yt ) WM e-i(ωtI+Φ)W-1y0 (3)
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and is easily calculatedVia the expression

in which the subscript image refers to the complex part of the
designated matrix and the superscript+ denotes the pseudoin-
verse of the designated matrix. The pseudoinverse24 of a matrix
is used to solve linear systems when the coefficient matrix, here
Ỹ′, is singular and has no inverse. Since (Ỹ′) +Ỹ′ ) I , the
pseudoinverse calculates the minimum norm solution of an
infinite number of system solutions. The initial concentrations
are calculated from a rearrangement of eq 9:

Emission Frequency-Domain Decay Matrix Partitioning.
When the spectra of the mixture components are known, the
frequency-domain decays of those components can be calculated
immediately fromD̃:

When the spectra of the mixture components are not known,
because the spectrum depends on the fluorophore environment,
the spectra, photokinetics matrix, and initial concentrations can
still be estimated by factorization of the emission-frequency
domain decay matrix. While the spectra and decays which
comprise the matrix are unknown, related matrix components
are readily calculated. The singular value decomposition
partitionsD̃ into the product of three matrices, two of which
are linear combinations of the spectra and frequency-domain
decays:

In the absence of measurement errors,Ũ is ther × nmatrix of
column basis vectors (linear combinations of spectra),Ṽ is the
c × n matrix of row basis vectors (linear combinations of the
component frequency responses) andS is ann × n diagonal
matrix whose elementssii reflect the contribution of the product
ũ·isii ṽ′·i to the variance ofD̃.
Since the basis vectorsŨ andQ̃ are linear combinations of

the component spectra and decays, there must be a transforma-
tion matrix, Π̃, which converts those orthogonal basis vectors
to the physically relevant matricesX and Ỹ. That is, since

there must exist someΠ̃ such thatŨΠ̃ ) X andΠ̃-1Q̃′ ) Ỹ′.
Most importantly, the simple algebraic relationship betweenK
and the frequency-domain decay data described by eq 9 is
preserved. As a result, the initial concentration matrixY0 and
photophysics transfer matrixK can be calculated directly from
Π-1 andQ̃:

This means that, for a given a spectral transformation,Π̃, the
corresponding photokinetic matrix is estimated, completely
characterizing the kinetic mechanism withouta priori assump-
tions by the analyst.
When the spectra fluorescing components are not known,

neither are their quantum yields. Equations 8 can be rewritten
to include the quantum yields as matrix components rather than
spectral normalization factors:

were the matrixΦ is a diagonal matrix comprised of the
component quantum yields. When the emission-frequency-
domain decay matrix is analyzed without regard toΦ, the results
areX‡, Φ′KΦ-1, andΦy0. The component decay times are
unaffected byΦ, but the rates of excited state reactions (off-
diagonal elements ofK ) will be scaled by various ratios of
component quantum yields. The quantum yield matrixΦ can
be constructed from literature or experimental values and
inverted to adjustΦKΦ-1 andΦy0 prior to further analysis or
data interpretation.
One of the implicit limitations of this treatment is that there

is no distinction between discrete and distributed decay pro-
cesses. Since all the molecules decaying in a distributed system
emit the same spectrum, the rank of the matrixD̃ is insufficient
to analyze the distribution. In this case, the emission-frequency-
domain decay matrix is given by

were the matrixG is a matrix of ones and zeros which couples
related decays to a single-emission spectrum. In this case, the
results of frequency-domain analysis areX, GKG+, andGy0.
SinceG sums the elements across the rows ofK or y0, these
values correspond to the mean properties of distributed decays.

Data Analysis

Pseudorank Estimation. The first step in the analysis of
matrix-formatted fluorescence data is the determination of the
number of fluorophores which give rise to the observed matrix.
The rank of ar × c ideal fluorescence data matrix, the number
of basis vectors required to reconstruct the matrix, is the number
of fluorophores which emit distinct spectran. Measurement
errors superimposed on the fluorescence signal increase the rank
of an experimental data matrix tom, the smaller of the matrix
dimensions (i.e.,m) min(r,c) > n). In this case, the singular
value decomposition ofD̃ is

where Ũ now is the r × m matrix of orthonormal column
(spectral) basis vectors,Ṽ is thec × mmatrix of orthonormal
row (decay) basis vectors, andS is anm× m diagonal matrix
whose elementssii indicate the variance associated with the
corresponding productũ·isii ṽ·i′ to the total variance ofD̃. The
singular vectors and singular values are ordered by magnitude,
so that the first matrix componentũ·1s11ṽ′·1 describes the largest
fraction of the variance ofD̃ which can be described by a rank
1 matrix and the last componentũ·msmmṽ′·m describes the
smallest. The profile of the singular vectors associated with
the first component reflects the largest contributors to the
variance ofD̃ (i.e., spectral signals) while that of the last reflects
the smallest (measurement errors). In the case of high signal-
to-noise ratios, the variance associated with the spectral signal
is much larger than that associated with the noise andn is clearly
reflected in the magnitudes of the singular valuessii. In the
case of low signal-to-noise ratios, determination ofn can be a
difficult problem. The consensus of several indicators is
typically used. Methods comparing the variance of the matrix
components (i.e., the relative magnitudes of thesii) are often
less effective in this regime. Methods which compare the
frequency content of basis vectors25,26 capitalizing on the
predominance of high-frequency signal components in measure-
ment noise generally are more effective.

K ) (Ỹ′Ω̃)imagỸ′imag
+ (10)

Y′0 ) Ỹ′Ω̃ - KỸ ′ (11)

Ỹ′ ) X+D̃ (12)

D̃ ) ŨSṼ′ ) ŨQ̃′ (13)

D̃ ) ŨΠ̃Π̃-1Q̃′ (14)

K ) (Π̃-1Q̃′Ω̃)imag(Π̃
-1Q̃′)imag

+ (15)

Y0 ) Π̃-1Q̃′Ω̃ - KΠ̃-1Q̃′ (16)

D̃ ) X‡ΦWΓZ̃ ) XΦỸ (17)

D̃ ) XGWΓZ̃ ) XGỸ (18)

D̃ ) ŨSṼ′ ) ŨQ̃′ (19)

6886 J. Phys. Chem. A, Vol. 101, No. 37, 1997 Neal



Emission-Frequency-Domain Decay Matrix Partitioning.
When the spectra of the emitting components are not known,
the complex quantum yield matrix must be partitioned into
spectra and frequency-domain decays (eq 14) prior to model-
independent decay analysis. In other words, the values of the
elements of a transformation matrix,Π̃, which convert the
column basis vectorsŨ to the component spectraX, and whose
inverse transforms the scaled row basis vectorsQ̃ to frequency-
domain decaysỸ, must be determined. Feasible values ofΠ̃
can be determined by minimizing an objective function which
measures the compliance of the estimates ofX, Ỹ, K , andy0
with the mathematical constraints on physically meaningful
fluorescence data. Specifically, the component spectraX and
initial concentrationsy0 should be real and nonnegative. The
diagonal elements ofK should be real and nonpositive, while
the off-diagonal elements should be real and nonnegative and
sum to values that are smaller than the magnitudes of the
corresponding diagonal elements. The singular vectors will not
meet any of these criteria. The objective function should also
measure the agreement between the experimental data matrix,
D̃, and data matrices reconstructed using idealized spectra and
decays,D̃*. Idealized spectra and decays are estimated matrix
factors from which inconsistent elements have been deleted. A
reconstructed matrix can be computed by using idealyzed matrix
factors in the following rearrangement of eqs 8 and 9,

where the asterisk indicates deletion of inconsistent values from
the matrix. Theø2 function which measures this agreement is
given by the expression

where the variableσD̃ is a matrix comprised of the standard
deviation in the complex quantum yield andνD̃ denotes the
number of degrees of freedom in the calculation. The normal-
ization of the columns ofX, which reflects the relative quantum
yields, can be maintained by including constraints on the
normalization (the length) of the columns ofΠ̃.
Feasible values ofΠ̃ can be determined by minimizing the

length of a vectore, whose elements are the squared sums of
the inconsistent elements in the estimates ofX, Υ̃, K , andy0.
In other words, the elements ofe are the deviations of the
estimates ofX, Υ̃, K , andy0 from the mathematical criteria on
these quantities. Since the magnitudes of these vectors are very
different, the deviations must be scaled so that all the vector
components are of similar size. This is accomplished by
dividing the deviations by the corresponding matrix norms. The
components ofe are listed (without scaling factors) in eq 22
below. They are the negative and imaginary components of
X, the negative and imaginary components ofY0, the positive
diagonals ofK , the negative off-diagonals ofK , the off-diagonal
sums ofK , which are larger than the corresponding diagonal
elements, and theø2 between the experimental and reconstructed
matrices. The deviations of the lengths of the columns ofΠ
from their target values (unity in the example below) maintains
the normalization of the spectra to their respective quantum
yields.

wherei ) 1:r, j ) 1:c, k ) 1:n, and l ) 1:n andC represents
the field of complex numbers. The length ofe decreases as
the size of these deviations decreases. The transformation
elements which minimize the length of the objective function
vector reconcile the spectral and kinetic factors to the math-
ematical constraints on spectra, initial concentrations, and
transfer matrices. Deviations from sample specific constraints
can be included ine to facilitate the analysis when they are
available.
Graphical Evaluation of Postulated Spectra and Decays.

One of the tools available to the analyst for evaluating the results
of matrix partitioning is graphical analysis. Two types of plots
are useful for assessing the quality of the data and the validity
of the postulated spectra and decays. The first is a scatter plot
of the rows of the complex quantum yield matrix. The elements
of the spectral and frequency-domain decay matrices can be
considered coordinates of the rows and columns ofD̃, respec-
tively:

When the coordinates are normalized to sum to 1 (or 1+ i for
complex coordinates), graphs of the coordinates lie withinn -
1 dimensional simplices whose vertices coincide with the
coordinates of the spectra and frequency-domain decays. The
dispersion of the row coordinates,xij

‡, reflects the degree of
overlap in the spectra. The dispersion of the column coordinates
ỹkj
‡ reflects the overlap of the frequency-domain decays. When
one of the spectra has a characteristic base line, (i.e., zero
intensity at wavelengths which the other components emit) there
are rows which are combinations ofn - 1 decays. The
coordinates of these rows fall on a simplex face. When one of
the spectra has a characteristic band (i.e., nonzero intensity at
wavelengths which the other components do not emit, there are
rows which are comprised of a single decay. The coordinates
of these rows fall on the vertex of the simplex. The degree of
alignment of the row coordinates with the simplex defined by
the spectral coordinates can be used to evaluate prospective
spectral profiles. Since the frequency-domain decays generally
are overlapped irrespective of the kinetics, the column coordi-
nates are rarely significantly dispersed. These relationships are
illustrated using an emission-frequency-domain decay matrix
that was simulated from digitized spectra and decay profiles
generated by the numerical solution of a system of coupled first-
order differential equations. The spectra and frequency-domain
decays used to simulate the matrix-formatted data are illustrated
in Figure 2a,b. The scatter plot of the row coordinates of the
calculated emission-frequency-domain matrix are depicted in
Figure 2c.
The second graph which is useful in the evaluation of

prospective spectra/decay combinations is the Argand plot of
the frequency-domain decays. The Argand plot is anx,y plot
of the real and imaginary components of the decay at the various
modulation frequencies. Sugar has discussed the dependence
of the features of the Argand plot on the photokinetic model in
detail.21 The diagrams can confirm several properties of the

D̃* ) X*(K*)-1(Ỹ - Y*0) (20)

ø2 )
1

νD̃
∑
λ,ω (D̃* - D̃

σD̃
)2 (21)

e(1)) ∑ik (xik < 0)2 e(2)) ∑ik (xik ∈C)2

e(3)) ∑jk((y0)jk < 0)2 e(4)) ∑jk ((y0)jk∈C)2

e(5)) ∑k*l (kk*1 < 0)2 e(6)) ∑l (kll > 0)2 (22)

e(7)) ∑l ((∑k*lkkl) > -kll)
2 e(8)) ø2

e(9:8+n)) ∑l(|π̃•l| -1)2

d̃i• ) ∑
k

xikỹk• (23)

d̃·j ) ∑
k

x·kỹkj (24)
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photokinetic system: (1) the descriptiveness of coupled first-
order differential equations with constant coefficients, (2) the
number of fluorescent components, and (3) the mode of
fluorophore excitation. The Argand plots of the decays depicted
in Figure 2b are illustrated in Figure 2d. They are consistent
with undistributed, three-state kinetics with one nonradiatively
excited component.

Conclusions

Equations relating the emission-frequency-domain decay
matrix to the emission spectra, initial concentrations, and
photokinetic transfer matrix of fluorescent mixtures have been
derived for systems described by coupled first order differential
equations with constant coefficients. When the spectra of the
system components are known, the frequency-domain decays
of those components, and therefore the photokinetic matrix and
initial fluorophore concentrations, can be calculated directly
from the emission-frequency-domain decay matrix.27 When the
spectra are not known, the complex quantum yield matrix can
be partitioned into spectral and kinetic factors from which the
spectra, photokinetic matrix, and initial fluorophore concentra-
tions can be estimated.28 Several approaches to determining
the number of fluorescent components from the data matrix and
evaluating the validity of spectra estimated by the partitioning
method were reviewed. The construction of a vector valued
objective function to direct the partitioning of the complex
quantum yield matrix has been described.

Decay analyses based on the relationships described here have
several advantages over iterative Laplace transform approaches.
The calculations are carried out in the frequency domain,
avoiding the inflation of measurement errors that is associated
with the transformation process. The simultaneous determina-
tion of spectra which correspond to the emitting components
supports the physical relevance of the photokinetic mechanism,
regardless of how many components are involved. The emis-
sion-frequency-domain decay matrix is acquired from a single
sample, eliminating the necessity to measure system responses
under different experimental conditions. Most importantly, this
method does not require that the analyst choose or construct a
kinetic model for the fluorophore emission. The structure of
the resultant photokinetic transfer matrix reveals the details of
the kinetic mechanism.
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